economic cost (21)

5 Dec 2017

Modeling Global Warming Potential, Variable Costs, and Water Use of Young Plant Production System Components Using Life Cycle Assessment

Ingram, D.L., Knight, J. (University of Kentucky), and C.R. Hall (Texas A&M University)

The components for two production systems for young foliage plants in 72-count propagation trays were analyzed using life cycle assessment (LCA) procedures. System A was modeled as a gutter-connected, rounded-arch greenhouse without a ridge vent and covered with double-layer polyethylene and plants were fertigated through sprinklers on stationary benches.  System B was modeled as a more modern gutter-connected, Dutch-style greenhouse using natural ventilation, and moveable, ebb-flood production tables. Generally, the more modern greenhouse in System B was more efficient in terms of space utilization for production, heating and cooling, fertilization, and water use. While overhead costs were not measured, these differences in efficiency would also help to offset any increases in overhead costs per square foot associated with higher-cost, more modern greenhouse facilities.

HortScience 52 2017 (358 KB)

Key
pdfYou will need Adobe's Reader to view this file. Download the reader for free from Adobe's web site

Description of research activities

A national team of scientists is working to encourage use of alternative water resources by the nation’s billion-dollar nursery and floriculture industry has been awarded funds for the first year of an $8.7 million, five year US Department of Agriculture – National Institute of Food and Agriculture –Specialty Crop Research Initiative competitive grant.

The team will develop and apply systems-based solutions to assist grower decision making by providing science-based information to increase use of recycled water.  This award from the NIFA’s Specialty Crop Research Initiative is managed by Project Director Sarah White of Clemson University.  She leads a group of 21 scientists from nine U.S. institutions.

Entitled “Clean WateR3 - Reduce, Remediate, Recycle – Enhancing Alternative Water Resources Availability and Use to Increase Profitability in Specialty Crops”, the Clean WateR3 team will assist the grower decision-making process by providing science-based information on nutrient, pathogen, and pesticide fate in recycled water both before and after treatment, average cost and return-on investment of technologies examined, and model-derived, site specific recommendations for water management.  The trans-disciplinary Clean WateR3 team will develop these systems-based solutions by integrating sociological, economic, modeling, and biological data into a user-friendly decision-support system intended to inform and direct our stakeholders’ water management decision-making process.

The Clean WateR3 grant team is working with a stakeholder group of greenhouse and nursery growers throughout the United States.

For example, at the University of Florida graduate student George Grant is collecting data on removal of paclobutrazol, a highly persistent plant growth regulator chemical, from recirculated water using granular activated carbon (GAC) filters. This is being done in both research greenhouses and in a commercial site. The GAC filters can remove more than 90% of chemical residues, and are proving to be a cost-effective treatment method.

 

×