economic cost (21)

15 Apr 2019

Understanding Carbon Footprint in Production and Use of Landscape Plants

Ingram, D.L. (University of Kentucky), Hall, C.R. (Texas A&M University), and J. Knight (University of Kentucky)

Understanding carbon footprint (CF) and the underlying science is important to minimizing the negative impacts of new product development and assessing positive or negative cradle-to-grave life-cycle impacts. Life cycle assessment was used to characterize representative production models of field-grown and container-grown landscape plants. The dominant contributor to CF and variable costs of field-grown trees is equipment use, the majority of which is at harvest. Plastics, energy use for irrigation, and fertilization are the major contributor to CF of container-grown plants. Greenhouse heating can also be impactful on the CF of plants depending on the location of the greenhouse and the length and season(s) of production. Knowing the input products and activities that contribute most toward CF and costs allows nursery and greenhouse managers to consider protocol modifications that are most impactful on profit potential and environmental impact.

5 Feb 2019

Consumer Perceptions, Attitudes, and Purchase Behavior with Landscape Plants During Real and Perceived Drought Periods

Knuth, M. (Texas A&M University), Behe, B.K. (Michigan State University), Hall, C.R. (Texas A&M University), Fernandez, R.T. and P.T. Huddleston (Michigan State University)

A survey of 1543 subjects was conducted to explore consumer attitudes and behavior during real and perceived drought situations, especially in terms of their landscape purchases and gardening/landscaping activities. Findings could better inform educational programs and marketing strategies on the future demand of plant products and services.  Read on, to learn how subjects perceived if the region in which they lived was experiencing drought.

5 Feb 2019

Consumer perceptions of landscape plant water sources and uses in the landscape during real and perceived drought

Knuth, M. (Texas A&M University), Behe, B.K. (Michigan State University), Hall, C.R. (Texas A&M University), Huddleston, P.T. and R.T. Fernandez (Michigan State University)

Consumers’ attitudes and behavior toward potable water supplies have changed in other countries because of greater social awareness and increasingly widespread exposure to drought conditions. We surveyed 1543 consumers in the U.S.A. to assess their perceptions about landscape plants, the water source used to produce them, and plant water needs in the landscape.  Findings showed, further education and promotion may improve the perception of using recycled water. Increasing the perceived benefits of low water use in the landscape may also facilitate plant sales in times of adequate and low water periods.

  •   1  
  •   2  
  •   3  
  •   4  
  •   5  
  •   6  
  •   7  

Description of research activities

A national team of scientists is working to encourage use of alternative water resources by the nation’s billion-dollar nursery and floriculture industry has been awarded funds for the first year of an $8.7 million, five year US Department of Agriculture – National Institute of Food and Agriculture –Specialty Crop Research Initiative competitive grant.

The team will develop and apply systems-based solutions to assist grower decision making by providing science-based information to increase use of recycled water.  This award from the NIFA’s Specialty Crop Research Initiative is managed by Project Director Sarah White of Clemson University.  She leads a group of 21 scientists from nine U.S. institutions.

Entitled “Clean WateR3 - Reduce, Remediate, Recycle – Enhancing Alternative Water Resources Availability and Use to Increase Profitability in Specialty Crops”, the Clean WateR3 team will assist the grower decision-making process by providing science-based information on nutrient, pathogen, and pesticide fate in recycled water both before and after treatment, average cost and return-on investment of technologies examined, and model-derived, site specific recommendations for water management.  The trans-disciplinary Clean WateR3 team will develop these systems-based solutions by integrating sociological, economic, modeling, and biological data into a user-friendly decision-support system intended to inform and direct our stakeholders’ water management decision-making process.

The Clean WateR3 grant team is working with a stakeholder group of greenhouse and nursery growers throughout the United States.

For example, at the University of Florida graduate student George Grant is collecting data on removal of paclobutrazol, a highly persistent plant growth regulator chemical, from recirculated water using granular activated carbon (GAC) filters. This is being done in both research greenhouses and in a commercial site. The GAC filters can remove more than 90% of chemical residues, and are proving to be a cost-effective treatment method.